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SELF-SIMILAR SOLUTIONS OF A SYSTEM OF TWO PARABOLIC 

EQUATIONS 

A. M. Volchek and A. P. Napartovich UDC 533.9:51 

The description of many physical systems comes down to the solution of a system 
of two nonlinear equations of the parabolic type. Such systems can be the elec- 
tron-hole plasma of a semiconductor and a weakly ionized gas plasma, nonequili- 
brium superconductors, as well as a number of chemical and biological objects, 
the properties of which are determined by autocatalytic reactions. The formation 
of complicated nonuniform structures occurs upon the loss of stability in these 
systems. We shall examine the concrete problem of the development of an ioniza- 
tion-superheating instability in a self-maintained discharge, described by the 
equation of charged-particle balance of the plasma and the equation of heat balance. 
The mechanism of this stability is connected with the decrease in the density of 
gas escaping at constant pressure from a superheated region, and with the rise in 
electron temperature occurring as a consequence of this (see, e.g., [i]). Self- 
similar functions for the local values of the charged-particle density and the gas 
temperature, being solutions of the corresponding balance equations, are of 
interest for the understanding of the nonlinear state of this process. An 
ionization-superheating instability in a high-frequency field and a self-similar 
solution, describing the explosive development of conductivity in a constricting 
discharge, neglecting the thermal conductivity of the gas and charge recombination, 
were studied in [2]. Self-similar solutions of a pair of equations of the para- 
bolic type under the conditions of a self-maintained glow discharge are investi- 
gated in the present paper. The solutions obtained can be of interest for a whole 
series of physical systems. 

Let an electric discharge be ignited between two electrodes spaced a distance L apart. 
Assuming that it is uniform along the current, we use balance equations for the charged- 
particle density n and the gas temperature T: 

a n l ~ t - -  O a A n  = v i n  - ~n~; (1) 

i aT i__ .E ~ 
ot xTAT = - - .  ( 2 )  cpp 

Here D a and X are the coefficients of ambipolar diffusion andthermal diffusivity, respec- 
tively; ~i is the frequency of ionization by electron impact; $ is the dissociative- 
recombination constant; Cp is the reduced heat capacity of the gas; o = e2n/mvm is the 
conductivity of the discharge plasma, which neglecting electron-electron collisions, is 
proportional to the electron density. In writing (i) and (2), it was assumed that the 
time of pressure equalization is small compared with the characteristic time of development 
of instability. This is possible if the pressure does not increase with time owing to the 
presence of a large ballast volume. 

The ionization frequency is usually a sharply growing function of the parameter E/N 
ET (N is the gas density). Under the conditions of a gas discharge, the approximation 
vi = A exp (-Bp/ET) is used for the frequencies [i], where A, B = const. 
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For relatively small variation of the quantities AE/E0 and AT/T0, one can adopt an 
expansion of this expression, 

~i = vioexp[C(AT/To + AE/Eo)I, (3) 

with C = Bp/EoT o >> i. The remaining coefficients depend little on the field and tempera- 
ture, so that their variation is neglected. 

With an assigned external source having an emf E and an electric field strength E 0 = 
e/L, for the dimensionless quantities u = AT/T 0 and v = n/n 0 we have the system of equa- 
tions (no and To are the values of the electron density and gas temperature) 

O v l O t - - D a A v  = ~i0vexp ( C u ) - - ~ v 2 ;  (4 )  

Ou]Ot - -  ~ A u  = v ~  (5 )  

(~n -1 = C p p / o ( n 0 ) E ]  i s  t h e  h e a t i n g  t i m e  o f  t h e  n e u t r a l  g a s ) .  

I f  t h e  w a l l s  C o n f i n i n g  t h e  d i s c h a r g e  in  t h e  t r a n s v e r s e  d i r e c t i o n  a r e  l o c a t e d  f a r  
enough  away t h a t  h e a t  r e m o v a l  i n  them can  be n e g l e c t e d ,  t h e n  t h e  u n i f o r m  s o l u t i o n  o f  t h e  
s y s t e m  ( 4 ) ,  ( 5 )  d e s c r i b e s  q u a n t i t i e s  u and v g rowing  s l o w l y  w i t h  t i m e .  With  weak f e e d b a c k  
t h r o u g h  an e x t e r n a l  c i r c u i t ,  f a r  f a s t e r  e x p l o s i v e  g rowth  o f  n o n u n i f o r m  d i s t r u b a n c e s  i s  
p o s s i b l e  a g a i n s t  t h i s  b a c k g r o u n d .  A m a t h e m a t i c a l l y  s i m i l a r  s i t u a t i o n  a r i s e s  i n  t h e  
p r o p a g a t i o n  o f  h e a t  i n  m e d i a  c o n t a i n i n g  d i s t r i b u t e d  n o n l i n e a r  s o u r c e s  [ 3 - 5 ] .  He re  i t  t u r n s  
o u t  t h a t  t h e  i n i t i a l  d i s t u r b a n c e s  can  be c o n c e n t r a t e d  i n t o  a f i l a m e n t  where  t h e  t e m p e r a t u r e  
becomes  a s  h i g h  a s  d e s i r e d  i n  a f i n i t e  t i m e .  

The d e v e l o p m e n t  o f  s u c h  d i s t u r b a n c e s  o b e y s  c e r t a i n  s e l f - s i m i l a r  r e l a t i o n s .  We s e e k  t h e  
s o l u t i o n  o f  t h e  s y s t e m  ( 4 ) ,  ( 5 )  i n  t h e  f o r m  

u =  * ( ~ -  1. [(t o - 0 ~o] .  ( 6 )  
C 

~ ( ~  ( 7 )  
v = c ~  (t o - t)' 

where t o is the time of the explosion; T = x/2~D,(t o --~ is the self-similar variable. Here 
and later we consider the one-dimensional case, when all the quantities vary along the trans- 

verse current of the spatial variable x. All the results also remain valid in a cylindrical 
geometry with the axis coinciding with the position of the generatrix of the current filament. 

The functions r and ~ satisfy a system of two ordinary differential equations: 

+ - i ~  - - q - =  ~ e * - -  k ~ ;  ( 8 )  

I +- -5-q / - - •  ~. (9) 

The system contains the parameter K = • a and k = ~n0/Vn C, the magnitude of which determines 
the relative roles of heat conduction and volumetric recombination. In a glow discharge the 
first of these is small. Taking X as approximately equal to the coefficient of molecular 
diffusion, we obtainx ~_ T/Te ~3"10 -2 . Under the assumptions made above, the parameter k 
does not depend on n o and, for a concrete type of gas, is a function of the argument E/N. 
Estimates show that it can be either greater or less than one. For nitrogen with E/N = 
6"10 -le V'cm 2, e.g., we have K m 10, while for helium with E/N = i0 -le V.cm 2 we have 
k ~ 0.1. 

Let us consider certain peculiariies of solutions of the system (8), (9) that have 
physical meaning for any value of T. The equations take the simplest form for < = k = 0. 
In this case, their order can be reduced to one, for which we multiply the first of the 
equations by T and find its first integral, substituting the value of r from the second 
equation. Finally, we have 

For solutions of Eq. 
condition 

~2" -- 2 ~ '  -}- 4(e* - -  t)  :- const /~t  

(10) that are finite for T = 0, we must set const = 0. 

(i0) 

Moreover, the 
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9 -~ 0 for I~I-~ ~, (li) 

must be satisfied, since ~ > 0 for any ~. Self-similar solutions of this kind describe a 
developing current filament in which the electron density is far higher than in the uniform 
plasma. 

Symmetric solutions of an equation analogous to (i0) were investigated in [3-5], in 
which the authors started from a power-law dependence of the power of the nonlinear sources 
on the temperature. The temperature dependence of the ionization frequency had the same 
form in [2]. The difference between the two approaches has a formal character in the given 
case, since with C >> 1 and a small variation of T, the difference between the exponential 
function and the power-law function v i = vi0(T/T0) C is insignificant. According to these 
papers, the condition (ii) defines a problem of finding an eigenfunction; such a function 
exists and is unique, too. 

Since (i0) contains no parameters, the values of ~(0) and At (the width of the filament) 
must have the order of unity. For larger T, the functions ~ and r have the asymptotic 
forms ~ m --2 in T and r m I/T 2 . This means that the gas temperature and electron density 
far from the filament do not depend on time: 

T~ T o -- I n ~  n 

[ ~ i 0  

The t o t a l  c u r r e n t  i n  t h e  f i l a m e n t  grows w i t h  t i m e  a s  ( t 0  - t ) - ~ / 2 .  I n  t h e  g e n e r a l  c a s e  
o f  ~ # 0 and k # O, t h e  o r d e r  o f  t h e  s y s t e m  ( 8 ) ,  ( 9 )  c a n n o t  be  r e d u c e d .  I t  p r o v e d  p o s s i b l e  
to clarify the character of the individual solutions and make qualitative estimates, however. 

The monotonicity of the behavior of the functions r and ~ can be judged from their be- 
havior near the "equilibrium position" ~0 = i, ~0 = In(l + k). Just as happened in [4}, we 
find that for a small deletion of the function ~ (~i = @ - ~0) satisfying the linearized 
system (8), (9), there exists a unique solution not growing exponentially as ITI + ~: 

~, ~ ~2 _ (1 -~- k• + k). (12)  

This gives reason to assume that, although the order of the system is higher for ~ # 0, the 
eigenfunction satisfying the condition (ii) remains unique, and all the new solutions 
appearing with the increase in order have a nonphysical asymptotic form ~'% exp(T2/<) as 
ITI + m. The solution (12) approximately describes the behavior of the eigenfunction near 
the maximum and enables one to estimate the width of the filament. Taking ~I = 0 in (12), 
we find 

Aw=[ ' ~kx  1112 
[2 (i + k)] �9 

The conditions of a concrete system determine the various contributions of transfer 
processes to the formation of the filament. Heat conduction should he neglected for 
k~ << i. Then AT m (i + k)-i/2 and ~(0) m 1 + in(l + k). Inside the filament, if k >> i, 
ionization is balanced by recombination, while the size is determined by diffusion. For 
k< >> 1 and k >> i, the value of AT is determined by heat conduction and has the order ~. 
In this case the electron density and the gas temperature are connected locally # = (i/k)e~, 
while the function ~ satisfies an equation analogous to (i0). Under these conditions of a 

gas discharge ~ << 1 and, as a rule, k< << I. 

Let us estimate the time of explosive development of instability. For an initial fila- 
ment width A equal to the distance between the walls (for determinacy, A = 1 cm), a diffu- 
sion coefficient D a = 10 3 cmS/sec, and k = 10, we obtain to ~ A2/4Da k = 2.5 "10-s sec. 

Let us examine the efficiency of negative feedback between the density of the electrons 
and their temperature, accomplished through the ballast resistance in the discharge circuit. 
Let us assume that the electrodes are infinitely finely sectioned, while each section is 
connected to the current source through ,a separate ballast resistance. In this case the 
feedback is local and is described quantitatively by the equation for the external circuit, 

oER b + EL = e, (13) 
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where R b is the value of the specific ballast resistance, calculated per unit area. it is 
sufficient to consider small variations of the electric field, which are linearly connected 
with the electron density, in accordance with (13): 

~0-0 ~ L n 0 

Solutions of the system (i), (2) will not have an explosive character if the ionization 
frequency ceases to depend sharply on the gas temperature alone. In accordance with (3), 
(6), and (7), this happens for Vn(t 0 - t) m ~. At this time, at the maximum of nonuniformity, 
n = n o + n0/~C. 

If we assume that a filament appears when n = 2n 0 (n o is the electron density of the 
uniform background), then the value ~cr ~ I/C (the ratio of the specific ballast resistance 
to the specific resistance of the discharge) proves to be critical for the appearance of 
instability with an explosive character; it is determined in the limit of infinitely sec- 
tioned electrodes. In an actual situation, in general, there is an integral connection 
between the field and the discharge current [6], so that higher values of =cr should be 
expected. 
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